Air Monitoring

The challenges and benefits of local air quality monitoring

Oct 05 2016

Author: Amanda Randle on behalf of Environmental Instruments

Free to read

This article has been unlocked and is ready to read.

Download

A new generation of air quality monitors is now being offered to provide localised, real-time air quality readings - but the potential benefit is only just starting to be realised.

It is generally accepted that whilst measurements from air quality reference stations are highly accurate, they are not sufficiently location-specific. Key pollutants – such as NO2 and PM2.5 – vary dramatically over short distances and time intervals, but the large size, maintenance requirements and relatively high cost of reference equipment limits the places it can be installed. Diffusion tubes can offer a very cheap alternative and are much easier to install in specific locations, however they only offer a single reading over a number of weeks, and air quality professionals therefore rely on modelling techniques to fill the gaps. With research continuing to prove the extent to which air pollution varies significantly over space and time, the answer would be a reliable and accurate tool for taking real-time, localised measurements.
A number of new low-cost air quality monitoring systems are available, each with benefits and shortcomings. It is fair to say that the available sensors, whether electrochemical, optical or metal oxide, are all working at or close to their limit of detection to provide the low ppb or µg/m3 level of sensitivity required for any of the common ambient air quality applications. However, several systems offered for these applications provide readings in ppm or even % level readings – which clearly makes them inappropriate for ambient air monitoring. Some are also not fit for long-term outdoor use, as they are not fully weather proof or cannot cope with the expected temperature ranges. However, at least one system – AQMesh – does operate across a wide range of conditions and territories, so having established that a viable product exists, can it deliver the accuracy required?

Performance is clearly a major consideration for any user and comparing readings from a lower cost system against a reference station is the obvious place to start.  One immediate challenge is ensuring meaningful results. Particularly in roadside applications or where there is an immediate source of pollution, all sensors and intakes must be within a metre of each other and at an equal distance from the immediate source. Most sensors, not unreasonably, also require an uninterrupted air flow around them - mounting immediately above hot or wet surfaces will not give accurate readings. On the other hand, some limitations of reference equipment come to the fore when comparing with a different type of measurement. For example, single channel NOx analysers switch between measuring NO and NOx, calculating NO2 as the difference. This switching can have dramatic effects on readings for the two gases (which are measured separately and directly by other sensors) at short reading intervals, such as 1 minute. Similarly, any differences in clock synchronisation or reading averaging protocol (time beginning or time ending) can make the difference between a regression comparison R2 of 0.9 and 0.1, which can render comparisons meaningless.

Comparisons of particulate measurements are also problematic due to the range of reference-equivalent methods available and the limitations, in many ways, of the reference method itself. Since the expanded uncertainty of the reference equivalent measurements for PM10 and PM2.5 allows up to 25%, this should be borne in mind when making comparisons with lower cost particulate sensors. Overall, for both gases and particulate matter, if several identical low cost systems are co-located, the user should expect a high level of repeatability (R2 > 0.9) and should expect to be able to adjust accuracy by ‘calibrating’ – adjusting slope and offset – against a co-located reference/equivalent station. Some systems, such as AQMesh, then allow this scaling adjustment to be applied automatically to all future readings, minimising the need for manual data correction. Access to a calibrated reference station and careful co-location is currently key to getting value out of any of the current generation of emerging sensor systems, although the objective of good accuracy without the need for a reference station is being actively pursued...

Free to read

This article has been unlocked and is ready to read.

Download


Digital Edition

AET 31.2 Buyers' Guide 2024

February 2024

In This Edition Buyer's Guide Directory - Product Listings by Category - Suppliers Listings (A-Z) Water / Wastewater - Methane Emissions Analysis at Berlin Wastewater Facility - Inter...

View all digital editions

Events

Intersol 2024

Mar 26 2024 Paris, France

FORUM LABO LYON

Mar 27 2024 Lyon, France

UzChemPlast Expo

Apr 03 2024 Tashkent, Uzbekistan

analytica 2024

Apr 09 2024 Munich, Germany

View all events