Environmental Laboratory

  • Compact OEM gas analyser modules based on quantum cascade laser technology
    The module is very compact
  • For clients who want to test out the module, a friendly software allows users to easily monitor gas concentrations (here, NO and NO2).
  • Clients can first test the module in their R&D lab before OEM integration

Compact OEM gas analyser modules based on quantum cascade laser technology

Jan 16 2019 Read 684 Times

Existing laser-based gas detection technologies have reached a performance plateau. Indeed, traditional diodes do not lase in the mid-infrared fingerprint region where molecules absorb best and therefore are limited in sensitivity. NDIR techniques suffer from cross-interference and make it difficult to selectively detect a species. FTIR techniques can sometimes do the job but are rather expensive. Multi-pass cells don’t scale down in price with volume production and the mechanical moving parts don’t make it a robust solution for vibrating environments. Finally, the problem of cross-interference is not limited to laser-based techniques but can also be considered for other techniques like electro-chemical cells or paramagnetic techniques.

mirSense has developed a solution to meet these needs. After several years of development inside semi-conductor private labs, the mirSense company enters the market of gas analysis with a product innovation that combines high performance (sub ppm detection limits), small dimension (the size of a matchbox) and good cost-benefit ratio: the multiSense.

The multiSense combines two technological bricks: infrared quantum cascade lasers (QCL) and a heated photoacoustic cell. Both bricks have reached industrial maturity after several years of development.

QCL lasers are one of the few technologies able to emit in the mid-infrared (3µm to 12µm of wavelength) at ambient temperature and in a direct way. This wavelength range, well-known to spectroscopists, is the most significant range for the analysis of gas components because of the very strong absorption lines, with many molecules displaying a unique fingerprint. This range is well suited for trace detection of molecules.

Coupled to the lasers, the second technological brick, a heated photoacoustic cell, allows the detection of the spectral signature of the gases. By absorbing mid-infrared radiations, the gas will create a sound and emit various acoustic pressures that are detected by microphones. This system has no moving parts and is therefore more robust than multi-pass cells. It also has a great dynamic range with no saturation of the detector, allowing to measure from 1 to thousands of PPM for example.

Thanks to its know-how and by combining these two proprietary technologies, mirSense can offer detection performances of a few molecules amid one billion (10 ppb) in a very small format of a few cubic centimeters of volume, 10,000 times smaller than the current systems, for a cost inferior to current technologies.

The strategy of mirSense is not to sell an analyser to the end-users but rather to supply customised OEM modules for manufacturers of analysers that will integrate the mirSense modules inside their chassis.

Reader comments

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.

Post a Comment

Digital Edition

International Environmental Technology April 2019

April 2019

In This Edition Business News - New appointment to boost noise and vibration specialists - Restek and LECO collaborate in worldwide supply agreement - Evonik catalyst in the life support sy...

View all digital editions



Apr 25 2019 Bangkok, Thailand

64th ISA Analysis Division Symposium

May 05 2019 Galveston, TX, USA

Ozwater 2019

May 07 2019 Melbourne, Australia


May 15 2019 Seoul, South Korea

FlowExpo 2019

May 16 2019 Guangzhou, China

View all events