• Are Micropollutants Degradable?


Are Micropollutants Degradable?

Jun 27 2022

Entering our environment from a large number of different sources, micropollutants are found in trace levels in all types of water sources, from surface water to underground aquifers to wastewater to drinking water. Although they are nominally harmless in such small concentrations, problems begin to arise when they bioaccumulate in the natural world.

This phenomenon occurs because many micropollutants are not biodegradable, meaning they do not break down easily. Eventually, this causes them to build up in the aforementioned water sources, destabilising the delicate balance found in natural ecosystems and negatively impacting the flora and fauna which reside there. Ultimately, they can also damage human health when they are allowed to reach concerning levels in drinking water sources.

Stubborn customers

Although it does not apply to all micropollutants, many of them are highly resilient and do not easily degrade in nature. Heavy metals, pharmaceuticals, hormones and industrial chemicals are just some of the substances which contribute to elevated levels of micropollutants in our water sources.

What’s more, many of these are regarded as emerging micropollutants (EMPs), which means that humans have only relatively recently discovered the potential for damage that they hold. As such, very little is known about them – and current wastewater treatment systems are insufficient to remove them from effluent streams. This means that even after filtration, many EMPs can still survive and enter the environment once more.

Advanced monitoring techniques have allowed us to understand more about wastewater pollution in general and the phenomenon of micropollutant resilience in particular. However, there is still a long way to go before we fully understand the effects of these substances – and discover the best methods of removing them from the environment.

Revamping wastewater treatment protocols

As mentioned above, conventional wastewater treatment plants cannot fully remove micropollutants from their effluent. The scientific community is conducting research into how individual micropollutants can be targeted and effective methods of degradation have been arrived at – but the sheer scale of the challenge is proving to be tricky to overcome.

That’s because there are approximately 100,000 organic chemicals in use across Europe today, with an additional 1,000 new substances entering the market each year. Each of these requires its own unique approach to monitoring concentrations and removing the micropollutant from the sample, which means that companies who wish to ensure their effluent is 100% free from micropollutants must install a variety of different systems.

That is, of course, extremely costly and unfeasible for the majority of companies operating today. Although some of the expense can be passed onto consumers, that isn’t an ideal outcome either, especially with the world staring down the barrel of another recession. What’s more, regulation on the issue is sadly lacking at the present time, though steps are being taken by bodies such as the EU to address that shortcoming.

Digital Edition

International Environmental Technology 32.3 - May/June 2022

June 2022

In This Edition ICMGP Preview - ICMGP 2022 mercury conference will be ‘virtual’ - Mercury – a persistent challenge Water / Wastewater - AI supports flow measurements - Emerging...

View all digital editions



Aug 22 2022 Frankfurt, Germany

The Water Show Africa 2022

Aug 23 2022 Johannesburg, South Africa

World Water Week

Aug 23 2022 Stockholm, Sweden and online

AWRE 2022

Aug 24 2022 Sydney, Australia

Oil & Gas Asia

Aug 24 2022 Karachi, Pakistan

View all events