
CEM 2004 
 
 
The Potential of Soft Sensors for Continuous Emission Monitoring Systems 
 
F. Callero(1,5), P. Moretti(1,5), C. Parisi(1), A. Servida(1,5), F. Corona(2), R. Baratti(2,5), P. 
Bragatto(3), P. Pittiglio(3) and C. Codevico(4) 
(1) Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso, 31 

– I-16146 Genova - E-mail: servida@unige.it 
(2) Dipartimento di Ingegneria Chimica e Materiali, Università di Cagliari, - I-09123 Cagliari - 

E-mail: baratti@unica.it 
(3) ISPESL – DIPIA, Via Fontana Candida, 1 – I-00040 Monteporzio Catone (Roma) - E-mail: 

paolobragatto@tiscali.it 
(4) ENI R&M – Raffineria di Sannazzaro, E-mail: Cesare.Codevico@eni.it 
(5) Consorzio INSTM, Via B. Varchi, 59 
 
 
Introduction 
The growing public environmental awareness and the adoption of more strict environmental 
regulations are putting a lot of pressure on the operational engineers for operating the 
production plants in a safer and “greener” way. These are also the reasons for the enforced 
adoption of continuous emission monitoring systems (CEMS) for the on-line monitoring of the 
environmental process performance in terms of pollutant emission compliance. Because of 
the inherently difficulties associated to the use of dedicated analytical equipment (time delay, 
expensive equipment, high maintenance costs, and so forth), recently, parametric emission 
monitoring systems (PEMS) have gained more attention for their potential in implementing 
monitoring programs. The most important advantage of PEMS is the environmental 
compliance achieved with much less burdensome requirements on the facility (1). 
PEMS are based on the use of some sort of simplified parametric model to estimate primary 
and costly-to-measure process variables (i.e., compositions) from easy-to-measure process 
variables (i.e., flowrates, temperatures, pressures and so forth). PEMS closely resemble 
inferential tools (software sensors, SS) that are widely used in the Chemical Process 
Industry for monitoring and control purposes. In the last few years, the field of software 
sensors has become enough mature to provide a reliable alternative to conventional 
analytical techniques (2). 
The core of software sensors is constituted of models that are used to describe the functional 
dependence of the targeted process variable on the secondary (easy-to-measure) process 
variables. In this regard, neural network modeling provides a powerful modeling environment 
for developing non-structured process models, as proved by the large number of applications 
appeared in the recent years (3). 
Energy production represents, perhaps, one of the most important sources of air pollution, 
and could take great advantage from adopting in an efficient way PEMS based on software 
sensors for improving the operation efficiency of combustion systems (1, 4). 
The paper describes the recent results of a project aimed at developing online neural 
software sensors to monitor the emissions at the centralized chimneys in operation at two 
Italian refineries  (Saras e Raffineria Sannazzaro). 
 
The Case Studies 
The centralized chimney operating at the Saras is enslaved to the topping furnace and to 
three boilers of the thermoelectric power plant. The three boilers are fed with gas-oil or fuel 
gas and have only one combustion chamber each. They produce high pressure steam (70 
bar) at the rate of 70, 70 and 120 ton/h. The topping furnace (nominal power load of 110 
Mkcal/h) is operated with gas-oil or fuel gas and has three combustion chambers. The 
topping feed (oil stream) is preheated before entering the furnace. The furnace is equipped 
with two chimneys (North and South). Typically, the three boilers and the furnace are 
operated at full load with fuel gas; the gas-oil is used to integrate the fuel requirements to 
meet the energy request. When the topping furnace or one of the three boilers goes out of 
service the combustion air is flowed anyway through the combustion chamber, and the 
software sensor has to take care of this abnormal event.  



The centralized chimney operating at the Raffineria Sannazzaro is used only for the refinery 
power plant, which is constituted of two turbo-gas units of 25 MW each. Each unit is 
composed of a compressor, a gas turbine - fueled with fuel gas – and a recovery boiler. The 
recovery boilers are used to produce medium-low pressure steam (15 barg) to meet the 
refinery steam demand. This is why during the cold months the boilers are also fueled with 
fuel oil to meet the extra steam needs. 
 
Software Sensors: Generalities 
Software sensors are simplified process models that allow the inference of difficult-to-
measure process variables or indicators (compositions, conversions, quality indexes, and so 
forth) starting from easy-to-measure process variables (temperatures, flowrates, pressures 
and so forth).  
The basic structure of a software sensor is constituted of: 

• input variables (the process variables that are easy to measure online); 
• the process model; 
• the output variables (the process variables or performance indexes that we wish to 

estimate). 
The core of a software sensor is the process model and there are several approaches for 
formulating it. Typically one adopts parametric models (or black box models, in the 
terminology of process engineers) for their computational ease in on-line applications. The 
two most popular parametric modeling  are based on partial least square models (PLS) (5) 
and on neural network models (2, 3). The first models rely on linear modeling nevertheless 
they exhibit good descriptive characteristics. The reason for this behavior may be due to the 
specific structure of PLS models: they are build-up in terms of latent variables, namely the 
transformed variables obtained through a PCA analysis. The latent variables are derived so 
as they are fully uncorrelated to each other, and this could explain the accuracy observed for 
this sort of linear models. On the other hands, neural network models are nonlinear models 
that are expected to better describe the nonlinear dependence among the input and the 
output variables. Indeed, in a recent study (6) on the development of software sensors to 
estimate the Mooney viscosity of an elastomer (propylene – ethylene – diene) we have 
compared the performance of SS based on PLS and neural models. The results demonstrate 
that the latter exhibit better generalization (prediction) characteristics. 
In the following sections we will synthetically describe the results achieved for two industrial 
refinery chimneys. In particular we will address the most critical issues associated to the 
development of software sensors: 

• acquisition and preprocessing of the raw data; 
• selection of the process variables to be used as input to the neural network 

models; 
• selection of the data sets for calibrating and validating the model. 

The selection of the input variable is, perhaps, the most critical step in the development of a 
software sensor and can make the difference between a good and a poor inference model. 
Often, the novices in software sensor development believe that the use of parametric 
models, especially the neural ones, does not require any knowledge about the process. This 
is a gross mistake because in parametric models the knowledge about the process is tightly 
embedded through the optimal selection of the input variable set. People familiar with 
process identification well know how critical is to come up with a proper process model with 
adequate generalization properties. 
The calibration of the models requires care to avoid the problem known as overtraing or 
overfitting. This has to do with fitting the model to tightly to the calibration data in such a way 
that the model will well perform in fitting data but will miserably fail in prediction 
(generalization) (8). For this reason we have calibrated the models by adopting the cross-
validation approach. The method consists in dividing the data set used for training in two 
subsets: the training and the cross-validation data sets. The parameter optimizer directly 
works on the training data set while the cross validation data set is used to control the model 
error. Doing so, the model generalization characteristics are taken care of already during the 
parameter estimation. 
Since the selection of the input variables represents the key factor on which depends the 
success or the failure of the project, we typically adopt an hybrid approach that relies both on 



the physical knowledge of the process and on computer aided tools (statistical correlation 
indexes and principal component analysis, PCA). 
At this point it is worth spending few words on PCA (7), which represents a powerful tool of 
the statistical analysis of multivariate processes. The principal component analysis consists 
of a transformation of the physical measures in scaled process variables that have the 
following properties: 

• they are normalized so as to have zero mean and unitary standard deviation; 
• they are fully uncorrelated. 

The transformation is linear so as the total variance of the original data is preserved; the new 
space of the dimensionless variables (Z-scores) is called PC (principal components) space. 
Because of the uncorrelated nature of the scaled variables, the variance of the process can 
be described by making use of a reduced number of Z-scores. The principal components (or 
PC axes) are ordered for descending importance to the contribution to the total variability of 
the process, which is measured by the eigenvalues of the linear transformation. 
Consequently, the variability of the process can be described through a reduced number of 
scaled process variables. Indeed, this represents the most common application of PCA: 
reduction of the process variables required to monitor a process. This is usually 
accomplished by analyzing the projection plots in the PC planes. Because of the 
uncorrelated character of the scaled variables usually it is sufficient to consider the plots in 
the first planes. The projection plots also provide a powerful tool for detecting “abnormal” 
conditions (outliers or “non in control” operating conditions). The projection plots are 
integrated with the confidence volumes constructed by making use of the Hotelling T2 
statistics (7): any points outside the confidence regions (ellipses drawn by specifying a given 
confidence for identifying outliers) represents an outlier with the prescribed confidence. The 
most common confidence regions are drawn at the confidence level of 95 or 99% that are 
equivalent to the region of +/- σ or 2σ for the monovariate case. 
 
Case Study: Centralized Chimney at Saras 
This case study offers the opportunity to emphasize how critical is to acquire good data for a 
proper calibration of parametric models. These models are developed starting from plant 
data (they are also known as data-driven models), therefore, the “quality” of the data is a 
critical factor, namely, the data used for the software sensor calibration must be 
representative of normal (“in control”) operating conditions. Using plant data relative to “out 
of control” (outlier) conditions may jeopardize the correct calibration of the software sensor. 
On the other hand, the needs to take a critical look at the plant data can also be valuable to 
the process engineer who might improve his understanding on the performance of the plant 
and of the installed instrumentation. 
The refinery acquisition system allows the data historicization with a sampling time  of 10 
min.; the analysis has been pursued on data spanning about six months (October 2003 – 
March 2004). The chimney was equipped with analytical instrumentation to continuously 
monitor the concentration levels of CO, O2, NOx, and SO2. A systematic analysis of the 
analytical data has allowed to detect some problems with the instrumentation: 

• the CO measure exhibited a strong variability not justifiable in terms of actual plant 
performance. The observed problems could be due to a deterioration of the 
measurement cell or to poor calibration; 

• the remaining measurements exhibited, on the long term, a drift. 
The observed problems with the analytical equipment are mainly due to the recent 
installation of the instrumentation that was still under the acceptance phase. Even though the 
quality of the analytical data was considered not adequate for the calibration of software 
sensors pursued a semi-quantitative  analysis with the objective to gain some insights on the 
plant performance. The analysis was carried out in two phases: 

• identification of outliers through the application of PCA; 
• identification of correlations among the process variables and various operating 

conditions through the application of self organizing neural models (also known as 
self organizing maps, SOM). 

The SOM neural networks provide a useful tool to acquire a better understanding of the 
process by analyzing the correlations among the several process variables. This will be 
made clear in the following discussion. 



Figure 1a shows the maps of the relevant process variables for the topping furnace. At first, 
the map of the air input flowrate to the topping furnace (T1FRC142) shows a pattern which is  
completely different from those of the remaining process variables. Indeed a, careful analysis 
of the chart trends of the variable has highlighted an abnormal behavior shown in Fig. 2b 
which was due to a wrong reading of the measurement device. The map of the outlet 
temperature of the topping heated feed (T1TC101) clearly shows that the furnace operates 
at two different operating conditions, as also verified with the Saras plant engineers. 
The inlet and the outlet temperatures of the fuel oil preheating unit (T1TI053 and T1TC147) 
show similar maps indicating that they carry out the same information content, and thus, that 
only one of the two temperatures could be selected as input to the software sensors. This  
reasoning can be applied also to the outlet temperatures from the two furnace chimneys 
(T1TI068, northern chimney, T1TI055, southern chimney) and to the two temperatures of the 
inlet air streams to the furnace (T1TI108 and T1TI109). 

   
                 (a)                              (b) 
      Figure 1. (a) SOM maps for the topping furnace; (b) trend chart for air flowrate 

 
The maps of the four emission 
measurements (O2, NO, SO2 and 
CO)  are illustrated in Figure 2. A 
close look at the figure shows a 
clustering of the operating regions 
at high oxygen concentrations (left 
lower most left corner) that 
correspond to low concentrations 
of CO, NO and SO2, as expected. 
On the basis of this analysis we 
have developed a first sensor with 
20 inputs, 4 hidden neurons and 4 
outputs. As expected, the software 
sensor could not even describe the 
trend of CO composition, while for 
the other composition variables the 
trend description was satisfactory. 

We believe that most of the problems could be resolved with the replacement of the air 
flowrate measurement device and with a better maintenance and calibration of the analytical 
sensors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 2. SOM maps for the emission concentrations. 

 
Case Study: Power Plant Chimney (Raffineria Sannazzaro) 
For this case study the software sensors were developed by making use of historical data 
spanning twelve months of operations (March 2002 – February 2003); the data were 
acquired with a sampling rate of 6 min. The analytical monitoring system measured on-line 
the concentration levels of CO, O2, NO, and SO2. A critical analysis of the analytical data and 
interviews with instrumentation engineers has allowed to detect some maintenance problems 



with the CO sensor, thus, we decided to disregard it from the analysis. In the following we 
will show the results for the predictions of the emission level of NO, O2, and SO2. 
At first, we had to estimate the power generated at the two turbo-gas units by combustion 
and the thermal load at the two boilers. The total power at the turbo-gas units is constituted 
of various contributions: 

• the usable power generated by the turbines (which is continuously monitored); 
• the power absorbed by the compressors; 
• the sensible heat carry out by the effluent combustion gases. 

As a cross check we verified that the power absorbed at the compressors was about 60% of 
the total power produced by combustion. The  thermal load at the boilers was calculated 
from an energy balance that takes into account the sensible heat loss of the combustion gas 
coming out from the turbo gas units and the heat required for the production of the steam at 
15 barg. 
In the following we will show the results obtained for two kind of neural software sensors. 
The first one is based on a neural model that predicts the three compositions; the second is 
based on three distinct neural models one for each pollutant. 
By iteratively applying the PCA analysis we were capable to detect several outliers 
corresponding to the calibration periods of the analytical equipment that, unfortunately, could 
not be identified through a status-flag. The pre-processing analysis of the plant data has 
allowed to select a first set of 20 variables (10 for each unit) to be used as inputs to the 
neural models. The data set used to calibrate the neural models is based on two sets: the 
calibration and the cross validation data sets. The first one was constituted of 1370 data for 
training and the second 709. Figure 3 shows the projection plots – in the PC1-PC2 and PC1-
PC3 planes - for the calibration data sets; the projection plots also show the control volumes 
constructed at the 95% of confidence. The results clearly indicate that the calibration data 
are representative of three operating conditions. Indeed, the data set was build up by taking 
data from the following periods: 6/4/2002 – 11/4/2002, 31/7/2002 – 12/8/2002, 15/11/2002 – 
18/11/2002, and 28/12/2002 – 1/1/2003. 
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        Figure 3. Projection plots of the data set used to calibrate the neural models 
 
It is worth mentioning that for the data of Figure 3 the first three principal components are 
able to recover about 75% of the original data variance, as shown in Figure 4. This gives an 
idea of the variable reduction that can be achieved through the principal component analysis. 



For the cross validation data set, the 
comparison between the predicted 
and the experimental measurements 
of the pollutants emission is shown in 
Figure 5, where, in the inserts, are 
also reported the average percentage 
error (APE). The results refer to a 
neural model constituted of 20 input 
neurons, 5 hidden neurons and 3 
output neurons, which can be simply 
indicated as (20,5,3). 
In calibration (training and cross 
validation) good agreement between 
the predictions and the experimental 
measurements are attained for O2 and 
SO2. For NO there are some 

problems: as shown by the group of points of Fig. 5 that are off the diagonal. These are the 
points that were extracted from the operating conditions spanning the period of time 
13/01/2003 – 28/02/2003. During the latter part of this period of time the SS exhibited a 
systematic offset from the experimental measurements that could not be explained in terms 
of changes in the operating conditions. The observed discrepancy could be explained in 
terms of drift in the measures themselves. This is something we are looking at more 
thoroughly. 
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The predictions of the software 
sensor for the most critical period 
of operations (time 13/01/2003 – 
28/02/2003) are shown in Figure 
6. The results are rather good for 
the predictions of oxygen and 
sulfurous anhydride emission 
levels,; the software sensor 
appears to be less performing with 
respect to the emission level of 
nitrous oxide. It is worth 
mentioning that the prediction 
errors observed for the other 
periods of operations do not 
exceed the value of 5%.With the 
same 20 input variables we have 
also developed software sensors 
to estimate the emission levels 
through software sensors capable 
to estimate the concentration of 
one pollutant at the time. The 
results indicate that the best 
standard deviation error is 
obtained with the following single 
output SS structures: 

• O2: (20,3,1); 
• NO: (20,5,1); 
• SO2: (20,4,1). 

For the data set of Figure 6, with 
the single software sensor the 
accuracy of the NO predictions 
slightly improved (APE= 7.21%) 
while the predictions of the 
oxygen and SO2 deteriorated a 
little (APE= 1.06 and 6.8%, 
respectively). This might be due to 
the fact the 20 variables could not 
be the best selection for all the 
three single output SS. 
This is made more clear if we look 
at the contribution plots for the 
first three PC’s (Fig.7) that gives 
the correlation between the i-th 
physical process variable and the 
generic PC. 
In Figure 7 we have reported the 
results for the first three PC’s. The 

last three variables (21, 22, and 23) are the emission levels of oxygen, nitrous anhydride, 
and sulfurous oxide, respectively. The results indicate that the NO concentration is strongly 
correlated (aligned) to the PC1, and thus, we might expect a strong dependence on the 
process variables that exhibit the same sort of correlation. In this regard, the NO 
concentration behaves differently from O2 and SO2 concentrations. The latter appear to be 
strongly correlated to both the first and the second PC.  From the analysis of Figure 7 we 
could conclude that the input variables n. 11 and 12 could be eliminated from the model used 
to predict the NO emission; work is underway in order to optimize the single output software 
sensors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 5. Comparison between the predicted and 
the 
  experimental emission measurements for a SS 
based 
  on a (20,5,3) neural network (cross-validation). 
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      Figure 6. Comparison between the predicted and the 
      experimental emission measurements for a SS based 
      on a (20,5,3) neural network (predict. data). 
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              Figure 7. Contribution plots for the first three PC’s. 



 
Conclusions 
The paper discusses the results obtained for the development of software sensors capable 
to monitor the emission concentration of pollutants from combustion units. The results are 
shown for two industrial case studies. 
The first case study (Saras Refinery) shows the importance of having good data for the 
calibration of software sensors. We have discussed the use of SOM neural network to 
extract process information from plant data. 
For the second case study we show the results for software sensors with  single and multiple 
outputs. The accuracy of the developed SS are satisfactory and work is underway in order to 
optimize the single output SS. 
The illustrated results prove the potential of neural-based software sensors as continuous 
emission monitoring systems. 
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