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Introduction

According to Hopke (1991) the management of ambient air quality is a difficult but
important problem. In general, it involves the identification of the sources of materials
emitted into the air, the estimation of the emission rates of the pollutants, the
understanding of the transport-diffusion processes involved and the physical and
chemical changes that can take place during the transport. All of these elements can be
expressed in a mathematical model in order to compute the observable changes that take
place in the airborne concentrations if various actions are taken. These actions could
include new sources due to new industries or emission controls on existing facilities in
order to reduce pollution.

However, the atmosphere is very complex and although the mathematical dispersion
models used are complicated and require very fast and large storage capacity
computers, these models are still insufficient to permit the development of useful air
quality management systems. Thus it is necessary to have alternative methods available
to assist in the identification of sources. Such methods are called receptor models since
they are focused on the behaviour of the ambient environment at the point of impact as
opposed to the source-oriented dispersion models.

Receptor models are generally of two types:
(i) regression analyses known as chemical mass balance,
(ii) multivariate techniques such as factor analysis, and cluster analysis.
Chemical mass balance as described by Kowalczyk et al. (1978), needs a prior
knowledge of the number of sources. For example, in a study of a Chicago district,
aerosols were split into six components: automobile emissions, cement dust, soil dust,
emissions from coal-fired plants, emissions from oil-fired plants and steel industry
emissions.

According to the literature multivariate techniques are able to determine the number,
nature and mass concentrations of the particle source in a region without prior
knowledge of the sources. According to Hopke (1981) of the multivariate statistical
techniques that have been used as source-receptor models, factor analysis is the most
widely employed. The basic objectives of factor analysis is to allow the variation
within a set of data to determine the number of independent factors, i.e. groups of
particles.
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This paper describes an original and alternative statistical approach using
backpropagation neural networks which has the same objectives as factor analysis but
utilises a completely different technique. The method is therefore valuable as an
independent solution for comparison purposes and unlike factor analysis requires no
knowledge of statistics.

Receptor modelling using neural networks was applied to air quality data collected
from the ambient aerosol in a district of Birmingham in the West Midlands. Sixty-nine
fine fraction (dia. < 2.5 µm) and seventy coarse fraction (2.5 µm < dia. < 11 µm)
aerosol samples were used in the study, the object of which was to identify and quantify
sources of pollution.

For this study the data set consisted of the concentrations (ng/m3) of a large number of
metals and anionic species, plus meteorological data such as relative humidity (%),
temperature (oC), wind speed (km/hr), solar radiation (W/m2) and daily rainfall (mm).
This data was taken over 70 sampling days during the winter of 1990 by Lukana and
Harrison (1991), for the fine and coarse data respectively.

The results of the neural network analysis were compared with the factor analysis
results obtained by Wormald (1994) using the same data sets. Wormald’s dissertation
verified the results of an earlier factor analysis study by Birmingham University.
However, the meteorological data was used only in the neural network analysis and not
in the factor analysis study. Also, unlike the neural analysis, it was not possible in the
factor analysis method used by Wormald to find the mass concentrations of any of the
elements only their matrix loading factors.

Neural Network Methodology

The data consists of twenty-one elements for the coarse fraction samples, twenty-three
elements for the fine fraction samples plus in each case five relevant meteorological
measurements. Concentrations of each element, expressed in ng/m3 was measured each
day for 70 days. The data showed that the order of magnitude and range of
concentrations for each element varied widely. For example, silicon (Si) ranged from 0
to 26.1 ng/m3 whereas sulphur (S) ranged from 395 to 3818 ng/m3. This difference in
the value and range of the concentrations causes difficulties since in order to compare
and find relationships between the elements it is necessary that each element’s
concentration varies over approximately the same range. In factor analysis the data can
be standardised in a variety of ways, one method of which is to subtract the variable
from its mean and divide by its standard deviation in order to create a transformed
value for the variable. In neural networks this transformation is done automatically
since every variable can only be represented from 0 to 1. However, unlike most factor
analysis transformations which are linear, modern backpropagation networks usually
use a sigmoidal function to transform the data.

Because neural networks have not been used before for this type of application, it was
not initially clear how to apply them. For example, with this type of database there is no
obvious output or answer or dependent variable resulting from a set of inputs or
independent variables, as is the case in most backpropagation applications. For this



type of problem we need to identify groups of elements which are associated with each
other because they represent specific sources of pollution. It should be realised that in a
complicated aerosol such as Birmingham one specific group of elements can represent
several different sources of pollution. We do not know the sources so we cannot start
with the answers and then train the network to tell us which sources are polluting the
atmosphere on a particular day. Once we know the sources this could well be another
useful application. Logically, the problem suggests that we use an unsupervised
associative type of neural network which is presented with the

 

data and then self
organises or categorises it into groups or sources. This type of complicated neural
architecture does exist, Kohonen is an example, but backpropagation can also be used
in an associative way. Also, since over 95% of all neural networks used world-wide
are of the backpropagation type it is more useful to demonstrate how they can be used to
solve this type of application than to experiment with network architectures that are
highly specialised and unfamiliar to most engineers and scientists.

Backpropagation Procedure

The elements were analysed starting with the fine fraction data plus meteorological
conditions, obtaining their groups, then repeating the whole process without the
meteorological data. The concentrations from the two sets of results were compared
and averaged for each pollutant group found and any significant meteorological
conditions identified. This calculation was executed twice, firstly in order to see how
much the meteorological conditions affected the results and secondly to have the results
from two independent neural calculations. Neural networks never produce the same
results twice even with identical data and network parameters, and since we have no
answers to check the results with it is important to repeat the procedure. The same
method was used using the coarse fraction data, giving four different calculations in
total.

Because a supervised type of network is being used, the only sensible option open to us
is to use one variable at a time for the input and observe its effects on the remaining
variables in the output section. Also, it will be assumed that if an increase in input A
results in an increase in output B, then there is only a significant group relationship
between them if likewise an increase in input B produces an increase in output A.

When using the BrainMaker neural network the steps involved in the calculation are:
(1) Load the data from the database into the neural shell. Since we have no answers
for checking purposes use all the data available for training. Shuffle the data twice.
(2) Identify one variable as the INPUT, the remainder, with the exception of the
collection day which is not used, become the PATTERN or output.
(3) Set the screen display to THERMOMETERS and the training tolerance
parameter to 0.40. Use the default values for the other parameters i.e. learning rate
constant equal to 1.0, with one hidden layer containing the same number of neurons as
in the output layer.
(4) Train the network and save it when as many of the 69 or 70 input/output data
pairs are matched or recorded as GOOD. Since the data set is not ideal, for some input
elements, this may be as low as 30 and will probably train within 200 iterations or
runs. With this type of data nothing is gained by letting the network run for more than
200 runs, in fact the training could become worse.



(5) Edit the network input of the trained network by setting this single element to its
maximum value, i.e. 8/8 units of concentration. (The thermometers, which replace the
actual numerical values of concentration, are split into eight parts). Note the resulting
units of concentration for all the elements in the output section plus the meteorological
values. Now set the input concentration to zero, i.e. 0/8 units, and record the output
values. Calculate and record the difference between the two values for each element
and meteorological variable.
(6) Repeat sections (1) to (5) above for all the remaining elements and
meteorological variables. Also, when recording the data assume that the single input
variable used is also an output.

When using the fine data set with meteorological variables, this procedure will result in
training 28 different neural networks, 23 for the atmospheric elements and 5 for the
meteorological variables. Finally, a neural network can be built using published data on
composition profiles of a number of sources in order to identify the possible origins of
the groups of elements found in this study.

Neural Network Results for the Fine Fraction Data

In order to have two independent solutions, the procedures for finding groups of
elements from the fine data was executed twice. Firstly, the data on element
concentrations was trained together with its meteorological data, then secondly trained
without the meteorological data. As mentioned previously, since we have no method of
checking whether the neural networks are training the data correctly, it is important to
train at least two sets of networks. Only if the results are similar can we be sure that the
network training is not producing random results. Also, the meteorological data should
not significantly influence the composition of the groups of elements found.

Fine Fraction Data with Meteorological Variables

Table 1 shows the values obtained after steps 5 and 6 of the Backpropagation
Procedure are executed, the meteorological data are not shown here. For example when
Cl set to a thermometer value of 8 (the maximum value), the resulting thermometer
outputs are: P = 7, S = 7, K = 8, Ca = 3, Si = 8, etc. When the input  for Cl is set to 0,
the resulting thermometer outputs are: P = 3, S = 4, K = 3, Ca = 3, Si = 0, etc. The
differences between the values are thus: input Cl = (8-0) = 8, and outputs P = (7-3) = 4,
S = (7-4) = 3, K = (8-3) = 5, Ca = (3-3) = 0, Si = (8-0) = 8, etc. These differences are
shown in Table 1 on the third row for input Cl.

Table 2 shows the values in Table 1 after neglecting thermometer values for the
elements less than two. The accuracy of  these procedures is not very high and it does
not help to retain thermometer differences which are not significant. Together with these
values are their reciprocal element values shown in brackets. For example, when nickel
(Ni) is used as input, the resulting phosphorus (P) output difference is 4.



OU
T   
IN

P S Cl K Ca Si Ti V Cr Mn Fe Ni Cu Zn As Se Br Pb Na NH4 NO3 SO4 C

P 8 1 3 0 0 2 2 1 0 1 4 5 -1 -1 -3 2 -2 1 0 -2 -1 -3 0
S 3 8 1 0 0 0 -1 4 1 -1 3 2 -1 -2 1 0 -2 0 1 5 1 7 3
Cl 4 3 8 5 0 8 6 4 3 4 3 7 1 0 1 4 -2 4 5 -4 -3 0 2
K 3 -2 3 8 3 2 5 5 1 4 5 3 2 0 2 2 3 5 3 -1 -3 -1 1
Ca 1 0 0 2 8 1 3 3 1 5 5 -4 1 0 1 -1 2 5 1 -2 -2 0 6
Si 2 -2 8 4 0 8 6 2 3 3 2 5 1 3 1 2 -2 3 3 -3 -3 -1 1
Ti 4 0 7 5 2 7 8 4 2 6 6 2 3 1 0 2 1 5 6 -3 -3 0 1
V 2 1 2 4 2 1 5 8 2 5 6 4 -1 -1 4 2 1 5 1 0 -1 3 4
Cr -1 0 -1 1 -2 0 -1 1 8 -3 -1 -2 -2 0 1 -1 -1 -1 0 1 -1 1 -3
Mn -1 -3 4 5 4 4 6 5 2 8 7 -2 -3 -3 5 2 5 7 5 -4 -3 2 5
Fe -2 -2 0 6 5 0 5 7 2 8 8 -3 1 -3 2 -1 6 7 -1 -3 -2 -1 7
Ni 4 4 5 5 -2 3 0 1 -3 -3 -2 8 5 5 -3 2 0 -1 3 -3 -3 -3 -3
Cu 2 -3 4 4 1 3 -1 -1 3 -1 -2 -2 8 1 4 2 -2 -2 5 -4 -3 -2 -3
Zn 2 -4 3 -2 -3 4 -2 -2 -2 -3 -3 2 -1 8 -1 5 -2 -2 -2 -4 -3 -2 -2
As -2 1 0 3 1 0 1 3 0 3 3 0 0 -1 8 0 -1 4 2 0 -2 1 4
Se 3 1 3 4 -2 3 -2 1 2 -2 -2 3 0 4 -2 8 1 -2 0 -3 -3 -1 -2
Br -1 1 0 3 2 0 6 4 1 3 6 -2 -1 -1 0 -1 8 7 -2 -1 -3 -1 2
Pb 0 -3 0 5 4 0 3 4 1 7 6 -1 0 -2 4 0 7 8 5 -3 -2 -3 6
Na 2 -2 5 3 1 5 1 0 1 2 1 3 4 1 2 2 0 3 8 -2 -2 -3 0
NH4 0 2 -4 1 -3 -3 -3 2 0 -1 -2 -2 -4 -3 1 0 -3 -3 0 8 5 4 1
NO3 1 -2 -3 -1 -3 -3 -3 -3 -2 -2 -3 -2 -2 -3 -1 -1 -3 -3 -3 5 8 2 -3
SO4 1 8 -1 2 -2 -1 -2 2 2 -2 -1 1 -1 -1 1 0 -2 -2 -1 6 4 8 3
C -2 -1 0 3 4 0 3 5 0 3 6 0 -3 -2 1 1 5 6 -2 -3 -3 2 8
rh 1 1 0 -1 -3 -1 -2 1 0 -1 -3 2 -2 1 0 1 1 -3 -3 2 3 2 -1

tem
p

0 0 0 -1 1 0 -2 -3 -1 -2 -2 0 2 1 -1 0 -3 -3 1 -2 -2 -2 0

win
d

-1 -3 -1 -1 -1 -1 -4 -4 -2 -4 -4 -1 0 1 0 0 -5 -5 1 -3 -1 -1 -4

sr -2 -3 -2 -2 -1 -2 -1 0 -2 -2 -1 -2 -2 -2 -2 -2 0 -2 0 -1 -3 -1 -1
rain -3 -2 -3 -2 0 -3 -2 -2 0 -1 -2 -2 -1 0 0 -3 -2 -3 2 -2 -2 1 -2

TABLE 1. Thermometer Changes in Fine Data Output Values Due to Maximum Input Changes



OUT
IN

P S Cl K Ca Si Ti V Cr Mn Fe Ni Cu Zn As Se Br Pb Na NH4 NO3 SO4 C

P 8 (8) (3) 3 (4) (3) 2 (2) 2(4)  (2) 4 5 (5) (2) (2) 2 (3) (2)
S 3 8 (8) (3) 4 3 2(4) 5 (2) 7 (8) 3
Cl 4 (3) 3 8 (8) 5 (3) 8 (8) 6 (7) 4 (2) 3 4 (4) 3 7 (5) (4) (3) 4 (3) 4 5 (5) 2
K 3 3 (5) 8 (8) 3 (2) 2 (4) 5 (5) 5 (4) 4 (5) 5 (6) 3 (5) 2 (4) 2 (3) 2 (4) 3 (3) 5 (5) 3 (3) (2)  (3)
Ca 2 (3) 8 (8) 3 (2) 3 (2) 5 (4) 5 (5) 2 (3) 5 (4) 6 (4)
Si 2 (2) 8 (8) 4 (2) 8 (8) 6 (7) 2 3 3 (4) 2 5 (3) 3 (4) 2 (3) 3 3 (5)
Ti 4 (2) 7 (6) 5 (5) 2 (3) 7 (6) 8 (8) 4 (5) 2 6 (6) 6 (5) 2 3 2 (6) 5 (3) 6   (3)
V 2 (4) 2 (4) 4 (5) 2 (3) (2) 5 (4) 8 (8) 2 5 (5) 6 (7) 4 4 (3) 2 (4) 5 (4) (2) 3 (2) 4 (5)
Cr (3) (3) (2) (2) 8 (8) (2) (2) (3) (2) (2)
Mn 4 (4) 5 (4) 4 (5) 4 (3) 6 (6) 5 (5) 2 8 (8) 7 (8) 5 (3) 2 5 (3) 7 (7) 5 (2) 2 5 (3)
Fe (4) (3) (3) 6 (5) 5 (5) (2) 5 (6) 7 (6) 2 8 (7) 8 (8) 2 (3) 6 (6) 7 (6) 7 (6)
Ni 4 (5) 4 (2) 5 (7) 5 (3) 3 (5) (2) (4) 8 (8) 5 5 (2) 2 (3) 3 (3)
Cu 2 4 4 (2) 3 (3) 3 (5) 8 (8) 4 2 5 (4)
Zn 2 3 4 (3) 2 (5) 8 (8) 5 (4)
As 3 (2) 3 (4) 3 (5) 3 (2) (4) 8 (8) 4 (4) 2 (2)    (2) 4
Se 3 (2) 3 (4) 4 (2) 3 (2) (2) (2) 2 (2) 3 (2) (2) 4 (5) 8 (8)  (2)
Br 3 (3) 2 (2) 6 4 3 (5) 6 (6) 8 (8) 7 (7) 2 (5)
Pb (4) 5 (5) 4 (5) (3) 3 (5) 4 (5) 7 (7) 6 (7) 4 (4) 7 (7) 8 (8) 5 (3) 6 (6)
Na 2 5 (5) 3 (3) 5 (3) (6) 2 (5) 3 (3) 4 (5) 2 (2) 2 3 (5) 8 (8)
NH4 2 (5) 2 8 (8) 5 (5) 4 (6)
NO3 5 (5) 8 (8) 2 (4)
SO4 8 (7) 2 2 (3) 2 (2) 6 (4) 4 (2) 8 (8) 3 (2)
C (3) (2) 3 4 (6) 3 5 (4) 3 (5) 6 (7) (4) 5 (2) 6 (6) 2 (3) 8 (8)

TABLE 2. Significant Thermometer Changes in Fine Data Output Values with Reciprocal Changes in Brackets



Input P Input S Input Cl Input K Input Ca Input Si Input Ti Input V
P = 8 S = 8 P = 4 Cl = 3 K = 2 P = 2 P = 4 Cl = 2
Cl = 3 Ni = 2 Cl = 8 K = 8 Ca = 8 Cl = 8 Cl = 7 K = 4
Si = 2 NH4 = 5 K = 5 Ca = 3 Ti = 3 K = 4 K = 5 Ca = 2
Ti = 2 SO4 = 7 Si = 8 Si = 2 V = 3 Si = 8 Ca = 2 Ti = 5
Ni = 5 sr  =  -3 Ti = 6 Ti = 5 Mn = 5 Ti = 6 Si = 7 V = 8
Se = 2 SOURCE 3 V = 4 V = 5 Fe = 5 Mn = 3 Ti = 8 Mn = 5
sr = -3 Row 2 Mn = 4 Mn = 4 Br = 2  Ni = 5 V = 4 Fe = 6

SOURCE 2 Ni = 7 Fe = 5 Pb = 5 Zn = 3 Mn = 6 As = 4
Row 1 Input Mn Se = 4 Ni = 3 C = 6 Se = 2 Fe = 6 Pb = 5

Cl = 4 Na = 5 Cu = 2 rh = -2 Na = 3 Pb = 5 SO4 = 3
Input Cr K = 5 sr = -3 As = 2 SOURCE 1 sr = -3 temp = -2 C = 4

Cr = 8 Ca = 4 rain  -3 Se = 2 Row 5 rain = -3 wind = -3 temp = -5
wind = -2 Si = 4 SOURCE 2 Br = 3 SOURCE 2 rain = -2 wind = -2

sr = -3 Ti = 6 Row 3 Pb = 5 Input Cu Row 6 SOURCE 1 SOURCE 1

Row 9 V = 5 Na = 3 K = 4 Row 7 Row 8
Mn = 8 Input Fe sr = -2 Cu = 8 Input Zn

Input Br Fe = 7 K = 6 SOURCE 1 Na = 5 Si = 4 Input As Input Se
K = 3 As = 5 Ca = 5 Row 4 rh = -4 Ni = 2 K = 3 P = 3
Ca = 2 Br = 5 Ti = 5 temp = 3 Zn = 8 V = 3 Cl = 3
Mn = 3 Pb = 7 V = 7 Input Ni sr = -3 Se = 5 Mn = 3 K = 4
Fe = 6 Na = 5 Mn = 8 P = 4 SOURCE 2 sr =-3 Fe = 3 Si = 3
Br = 8 C = 5 Fe = 8 S = 4 Row 13 SOURCE 2 As = 8 Ni = 3
Pb = 7 temp = -4 As = 2 Cl = 5 Row 14 Pb = 4 Zn = 4
C = 2 wind = -4 Br = 6 K = 5 Input NO3 Na = 2 Se = 8

temp = -5 sr = -3 Pb = 7 Si = 3 NH4 = 5 Input SO4 SOURCE 1 rain = -3
wind = -6 SOURCE 1 C = 7 Ni = 8 NO3 = 8 S = 8 Row 15 SOURCE 2

rain = -2 Row 10 rh = -4 Zn = 5 SO4 = 2 V = 2 Row 16
SOURCE 1 temp = -3 Se = 2 rh = 2 NH4 = 6 Input C
Row 17 Input Pb wind = -3 Na = 3 temp = -3 NO3 = 4 Ca = 4

K = 5 SOURCE 1 sr = -3 sr = -3 SO4 = 8 V = 5
Ca = 4 Row 11 rain = -3 rain = -3 C = 3 Mn = 3
Ti = 3 SOURCE 2 SOURCE 3 SOURCE 3 Fe = 6
V = 4 Input Na Row 12 Row 21 Row 22 Br = 5

Mn = 7 Cl = 5 Pb = 6
Fe = 6 K = 3 Input NH4 SO4 = 2
As = 4 Si = 5 S = 2 C = 8
Br = 7 Mn = 2 NH4 = 8 wind = -5
Pb = 8 Ni = 3 NO3 = 5 SOURCE 1

Na = 5 Cu = 4 SO4 = 4 Row 23
C = 6 As = 2 SOURCE 3

rh = -3 Pb = 3 Row 20
wind = -2 Na = 8

sr = -3 rh =-3
rain = -3 SOURCE 2

SOURCE 1 Row 19
Row 18

TABLE 3. Groups or Sources for the Fine Data with Thermometer Values



However, when phosphorus is the input value the resulting nickel output difference is 5.
This indicates that there is a genuine positive relationship between nickel and
phosphorus, and hence when Ni is the input, P is a valid output and equal to 4
thermometer units.

Each row of Table 2 represents a group of elements, and clearly more than one row
may represent the same group. The significant elements for each row are shown in
Table 3. A close inspection of the elements in rows 1 to 23 indicates that only three
possible groups of pollutants can be identified. Rows 4, 5, 7, 8, 10, 11, 15, 17, 18 and
23 can be identified as belonging to the first group, rows 1, 3, 6, 12, 13, 14, 16 and 19
the second group and rows 2, 20, 21 and 22 the third group. Row 9 indicates that
chromium (Cr) is not associated with any other element, but that its concentration
decreases slightly due to increases in wind speed and solar radiation. Group 1
pollutants are associated with high concentrations of  Fe, Pb, Mn and V, and low
concentrations of Ni, Cu, Zn and Na. Group 2 pollutants are associated with the
opposite composition of elements to group 1, and group 3 is associated with secondary
pollutants such as sulphate (SO4), ammonium (NH4) and nitrate (NO3) resulting from
sulphur dioxide and nitrogen oxide emissions.

In factor analysis one of the most difficult steps is to ascertain how many factors or
groups are required to represent the data. About five criteria are available in order to
make this choice, one of which is to use factors with variations or correlation matrix
eigenvalues greater than unity. Factors with eigenvalues of one or less are no better than
single variables. For the fine data the eigenvalue plot for the 23 elements, according to
Wormald (1994), suggested that there is only a 3 factor solution even though there were
5 eigenvalues greater than unity.

The first group of elements and meteorological variables are shown in Table 4.
Thermometer concentrations of each significant element are shown for all the rows
belonging to group 1. Since all of these rows represent input elements to the same
group, we need to average out the values. The simplest and best way is to total the
numbers and divide by the number of rows or inputs. When this is done, Table 5 gives
the thermometer concentrations of each element representing group 1. Elements with
concentrations less than 1.5 units have been omitted in Table 5. Table 4 also suggests
that as the wind speed and temperature both increase the concentrations of several of
the elements from group 1 decrease, especially bromine (Br) and manganese (Mn).

The second group of elements and meteorological variables are shown in Table 6. The
significant elements representing group 2, after neglecting concentrations less than 1.5
units, are shown in Table 7. According to Table 6, several of group 2’s elements
decrease slightly in concentration especially with increasing solar radiation, and to a
lesser extent increased rainfall.

The third group of elements and meteorological variables are shown in Table 8. After
neglecting concentrations less than 1.5 thermometer units, group 3 consists of the
elements shown in Table 9. It can be seen from Table 8 that no specific meteorological
change affects the elements from this group to any significant extent.



Output
Input

P Cl K Ca Si Ti V Mn Fe Ni Cu As Se Br Pb Na SO4 C rh temp wind sr rain

Row4 (K) - 3 8 3 2 5 5 4 5 3 2 2 2 3 5 3 - - - - - -2 -
Row5 (Ca) - - 2 8 - 3 3 5 5 - - - - 2 5 - - 6 -2 - - - -
Row7 (Ti) 4 7 5 2 7 8 4 6 6 - - - - - 5 - - - - -2 -3 - -2
Row8 (V) - 2 4 2 - 5 8 5 6 - - 4 - - 5 - 3 4 - -5 -2 - -
Row10 (Mn) - 4 5 4 4 6 5 8 7 - - 5 - 5 7 5 - 5 - -4 -4 -3 -
Row11 (Fe) - - 6 5 - 5 7 8 8 - - 2 - 6 7 - - 7 -4 -3 -3 - -
Row15 (As) - - 3 - - - 3 3 3 - - 8 - - 4 2 - - - - - - -
Row17 (Br) - - 3 2 - - - 3 6 - - - - 8 7 - - 2 - -5 -6 - -2
Row18 (Pb) - - 5 4 - 3 4 7 6 - - 4 - 7 8 5 - 6 -3 - -2 -3 -3
Row23 (C) - - - 4 - - 5 3 6 - - - - 5 6 - 2 8 - - -5 - -

Total 4 16 41 34 13 35 44 52 58 3 2 25 2 36 59 15 5 38 -9 -19 -25 -8 -7
Average 0.4 1.6 4.1 3.4 1.3 3.5 4.4 5.2 5.8 0.3 0.2 2.5 0.2 3.6 5.9 1.5 0.5 3.8 -

0.9
-

1.9
-

2.5
-

0.8
-

0.7

TABLE 4. Thermometer Values for Elements Belonging to Group 1 and Their Meteorological Variables

Element Therm.
Conc.

 /8

Element Therm.
Conc.

 /8
Chlorine (Cl) 1.6 Iron (Fe) 5.8
Potassium (K) 4.1 Arsenic (As) 2.5
Calcium (Ca) 3.4 Bromine (Br) 3.6
Titanium (Ti) 3.5 Lead (Pb) 5.9
Vanadium (V) 4.4 Sodium (Na) 1.5
Manganese (Mn) 5.2 Carbon (C) 3.8

TABLE 5. Thermometer Concentrations for the Principal Elements Representing Group 1 (Fine Data)



Output
Input

P S Cl K Si Ti V Mn Ni Cu Zn As Se Pb Na rh temp sr rain

Row1 (P) 8 - 3 - 2 2 - - 5 - - - 2 - - - - -3 -
Row3 (Cl) 4 - 8 5 8 6 4 4 7 - - - 4 - 5 - - -3 -3
Row6 (Si) 2 - 8 4 8 6 - 3 - - 3 - 2 - 3 - - -3 -3
Row12 (Ni) 4 4 5 5 3 - - - - - 5 - 2 - 3 - - -3 -3
Row13 (Cu) - - - 4 - - - - 8 8 - - - - 5 -4 3 -3 -
Row14 (Zn) - - - - 4 - - - - - 8 - 5 - - - - -3 -
Row16 (Se) 3 - 3 4 3 - - - - - 4 - 8 - - - - - -3
Row19 (Na) - - 5 3 5 - - 2 4 4 - 2 - 3 8 -3 - - -

Total 21 4 32 25 33 14 4 9 33 12 20 2 23 3 24 -7 3 -18 -12
Average 2.6 0.5 4.0 3.1 4.1 1.8 0.5 1.1 4.1 1.5 2.5 0.3 2.9 0.4 3.0 -0.9 0.4 -2.3 -1.5

TABLE 6. Thermometer Values for Elements Belonging to Group 2 and Their Meteorological Variables

Element Therm.
Conc.

 /8

Element Therm.
Conc.

 /8
Phosphorus (P) 2.6 Nickel (Ni) 4.1
Chlorine (Cl) 4.0 Copper (Cu) 1.5
Potassium (K) 3.1 Zinc (Zn) 2.5
Silicon (Si) 4.1 Selenium (Se) 2.9
Titanium (Ti) 1.8 Sodium (Na) 3.0

TABLE 7. Thermometer Concentrations for the Principal
Elements Representing Group 2 (Fine Data)



Output  Input S V Ni NH4 NO3 SO4 C rh temp sr rain

Row2 (S) 8 - 2 5 - 7 - - - -3 -
Row20
(NH4)

2 - - 8 5 4 - - - - -

Row21
(NO3)

- - - 5 8 2 - 2 -3 -3 -3

Row22 (SO4) 8 2 - 6 4 8 3 - - - -
Total 18 2 2 24 17 21 3 2 -3 -6 -3

Average 4.5 0.5 0.5 6.0 4.3 5.3 0.8 0.5 -0.8 -1.5 -0.8

TABLE 8.  Thermometer Values for Elements Belonging to Group 3 and Their
Meteorological Variables

Element Therm.
Conc.

 /8
Sulphur (S) 4.5
Ammonium (NH4) 6.0
Nitrate (NO3) 4.3
Sulphate (SO4) 5.3

TABLE 9.  Thermometer Concentrations
for the Principal Elements Representing
Group 3 (Fine Data)

Averaged Fine Fraction Results

Since two independent sets of results were obtained for each of groups 1, 2 and 3, with
and without meteorological data, we need to compare and average their results. Table
10 shows the concentrations for the elements in group 1, from Table 5 and Results 2
(not tabulated), and their average concentrations in thermometer units and ng/m3.
Sodium (Na) with an average concentration of less than 1.5 thermometer units has been
omitted. Likewise, Table 11 shows the concentrations for the elements in group 2, from
Table 7 and Results 2, and Table 12 the concentrations for the elements in group 3,
from Table 9 and Results 2. The results from training the neural networks, with and
without meteorological variables, are very similar. This indicates that firstly, the
results can be relied upon, and secondly, that the meteorological conditions do not
influence the composition of elements from each group.



Element Results 1
TABLE 5

( /8 )

Results 2

( /8 )

Average
Conc.
( /8 )

Average
Conc.

( ng/m3 )
Chlorine (Cl) 1.6 1.5 1.55 520
Potassium (K) 4.1 3.5 3.80 220
Calcium (Ca) 3.4 3.1 3.25 78
Titanium (Ti) 3.5 3.6 3.55 16
Vanadium (V) 4.4 3.7 4.05 15
Manganese (Mn) 5.2 4.9 5.05 170
Iron (Fe) 5.8 5.0 5.40 520
Arsenic (As) 2.5 1.8 2.15 4.8
Bromine (Br) 3.6 2.5 3.05 41
Lead (Pb) 5.9 5.7 5.80 420
Carbon (C) 3.8 4.0 3.90 3100

TABLE 10. Average Concentrations for Elements Representing
Group 1 (Fine Data)

Element Results 1
TABLE 7

( /8 )

Results 2

( /8 )

Average
Conc.
( /8 )

Average
Conc.

( ng/m3 )
Phosphorus (P) 2.6 2.6 2.60 140
Chlorine (Cl) 4.0 3.9 3.95 1300
Potassium (K) 3.1 1.6 2.35 150
Silicon (Si) 4.1 3.5 3.80 12
Titanium (Ti) 1.8 1.9 1.85 8.9
Nickel (Ni) 4.1 4.1 4.10 20
Copper (Cu) 1.5 1.5 1.50 140
Zinc (Zn) 2.5 1.6 2.05 2700
Selenium (Se) 2.9 2.6 2.75 2.9
Sodium (Na) 3.0 3.1 3.05 430

TABLE 11. Average Concentrations for Elements Representing
Group 2 (Fine Data)

Element Results 1
TABLE 9

( /8 )

Results 2

( /8 )

Average
Conc.
( /8 )

Average
Conc.

( ng/m3 )
Sulphur (S) 4.5 4.8 4.65 2400
Ammonium (NH4) 6.0 5.0 5.50 3700
Nitrate (NO3) 4.3 3.3 3.80 6000
Sulphate (SO4) 5.3 4.8 5.05 7900

TABLE 12. Average Concentrations for Elements Representing
Group 3 (Fine Data)



Comparison of Fine Fraction Results with Factor Analysis

The results from the factor analysis study by Wormald (1994) applied to the same data,
excluding the meteorological variables, is compared with the neural network results in
Table 13. In factor analysis the groups are called factors. In the factor analysis elements
with loadings less than 0.25 are not shown and in the neural analysis elements with
concentrations less than 1.5 thermometer units are not shown. Also, the neural analysis
was based on three groups whereas the factor analysis was based on five factors.
Comparison of the results shows that agreement for the first three groups is very good.
This is surprising considering the many stages, in both analyses, which involved
subjectivity by the modeller. The very low loadings for factors four and five indicate
that a three factor model, as suggested previously, would have been more appropriate.
It should be noted that the loadings given by a factor analysis study cannot be used to
predict concentrations, so identifying pollution sources using this method is far from
satisfactory.

Element Factor 1
(Loading)

Group 1
(Conc. /8)

Factor 2
(Loading)

Group 2
(Conc. /8)

Factor 3
(Loading)

Group 3
(Conc. /8)

Factor 4
(Loading)

Factor 5
(Loading)

Lead 0.92 5.8
Iron 0.90 5.4
Carbon 0.85 3.9
Manganese 0.81 5.1
Titanium 0.70 3.6 0.51 1.9 0.33
Bromine 0.69 3.1 0.31
Potassium 0.63 3.8 0.40 2.4 0.32
Calcium 0.63 3.3 0.37
Vanadium 0.61 4.1 0.37 0.47
Arsenic 0.45 2.2 0.31

Zinc 0.86 2.1
Nickel 0.85 4.1
Chlorine 0.31 1.6 0.84 4.0 0.29
Silicon 0.29 0.84 3.8 0.29
Copper 0.71 1.5 0.33
Selenium 0.63 2.8 -0.27 0.39
Phosphoru
s

0.57 2.6 0.41 -0.39

Ammonium 0.92 5.5
Sulphate 0.91 5.1
Sulphur 0.87 4.7
Nitrate 0.67 3.8 0.31

Sodium 0.38 3.1 0.70

Chromium 0.85

Note: In factor analysis loadings less than 0.25 are not shown.
In neural analysis thermometer concentrations less than 1.5 are not shown.

TABLE 13. Comparison of Results with Factor Analysis for the Fine Data



Identification of Air Pollution Sources in the Birmingham Region

The principal reason for doing a factor analysis or neural network study on measured
aerosol data is to identify possible sources of pollution from the factors or groups of
elements found. Several references are available to help in the interpretation of factors
giving information on source composition, usually concentrations obtained close to the
source. For example, Hopke (1985), and Kowalczyk et al. (1978).

Source Identification using Neural Network Concentrations

The neural network analyses, applied to the fine and coarse fraction data, identified
various groups of elements with their concentrations expressed in thermometer units
and ng/m3. The relative concentrations of these elements is the key to source
identification since, according to Houck (1991), each source of pollution has a unique
“fingerprint”. Table 14 shows the possible sources of pollution which could contribute
to the Birmingham aerosol, together with their source concentrations expressed in
mg/g. This data was taken from the “Selected Source Profiles” appendix of the book by
Hopke (1985). Average values were used where more than one set of concentrations
were given for the same source.

The possible sources of pollution were selected on the basis of known industries or
emissions in the Birmingham region, but the list could be enlarged to make it more
comprehensive. Since Birmingham is well known for its metal industries, it is
reasonable to include sources such as steel furnace, powder metallurgy, aluminium
furnace and copper smelter. Also, there are coal and oil fired power plants in
Birmingham plus many oil fired furnaces. Road dust, car emissions and diesel truck
emissions are definitely present plus road salt (marine) since the data was collected
during the winter months. There is also in Birmingham the Brierley Hill and Chance’s
glassworks, the Dunlop Tyre and Rubber Company, the Rugby Portland Cement works
near Southam south-east of Birmingham, and asphalt plants. Also, there are incinerators
belonging to refuse, sludge and car recycling plants. Finally, a rural soil source has
been added since the City is surrounded by market gardens.

With the source profiles entered into a database, the next step is to train a neural
network so that it can learn the source profile of each pollutant. The neural shell is
loaded with the database containing the information shown in Table 14. This
information consists of eighteen sources each identified by the mass concentrations in
mg/g of twenty one different elements. After shuffling the data twice the neural network
was defined as having 21 input neurons, one for each element, and 18 output neurons,
one for each source. With one hidden layer containing 21 neurons, a learning rate equal
to 1.0 and a training tolerance constant equal to 0.10, the network was trained and took
308 runs for it to match all the input/output pairs.



            ELEMENT
SOURCE

S Cl K Ca Si Ti V Cr Mn Fe Ni Cu Zn As Se Br Pb Na NO3 C

Rural Soil 0 0.28 0.10 16.2 10.6 290 7.6 0.22 0.18 0.13 55.3 0.04 0.09 0.15 0 0 0.05 0.23 8.9 0 2.7
Road Dust 4.2 5.7 2.0 20 33 220 5.5 0.3 0.3 1.0 61 0.13 0.25 2.4 0.3 0 0.10 3.6 2.2 0 21
Refuse Incinerator 1.0 32 200 10 35 24 3.6 0.02 0.87 0.41 7.1 0.17 1.5 4.9 0.31 0.04 0.92 3.0 2.5 40 36
Asphalt Plant 0 1.5 0.1 8.5 26 259 8.3 0.28 0.73 1.9 55 0.09 0.9 2.2 0 0 0.14 0.15 16.5 1.0 9.4
Cement Works 59 0 0 20 207 10 0.5 0 0.5 0.5 5.5 0.5 0.5 0.5 0 0.5 0 0.5 0 5.5 0
Coal Power Plant 0 200 11 10 23 5 2.6 0.13 0.4 0.31 18 0.18 1.3 3.0 0.26 0 0.16 2.0 9.7 0 0
Glass Manufacture 0 57 6.8 22 35 11.5 0 0.11 0.19 0.37 13 0.55 0 14 2.5 7.5 0.05 13 50 0 0
Oil Power Plant 0 0 37 1.3 250 0 0.08 70 0.18 0.3 8.4 12 2.5 4.9 0.08 0.1 0.16 1.2 37 0 0
Oil Furnace 0 150 0.57 0.63 1.3 0 0.27 1.4 0.56 0.28 11 2.4 2.8 0.8 0.12 0.04 0.02 2.1 2.9 5 0
Steel Furnace 0 84 42 15 22 0 0.92 0.06 3.0 40 270 3.7 5.3 210 0.18 0.05 0.28 52 20 0 0
Aluminium Furnace 0 180 30 42 3.9 2.2 0.58 0.32 0.51 0.15 15 4.6 3.6 7.5 0.09 0 0.20 6.0 30 5.5 0
Copper Smelter 0 50 0 47 11.7 0 3.6 0.07 0.07 0.19 53 0 5.5 0.54 0 0.01 0 0.05 17 0 0
Tyre Manufacture 0 26 13 7.6 3.6 78 0.24 0.10 0.07 0.32 1.5 0.10 0.37 0.07 0 0 0.14 0.1 1.9 8 395
Car Recycle Plant 0 2.4 47 1.4 30 4.4 0.3 0 1.0 0.43 47 0.16 5.5 15 0 0 44 2.5 0.9 0 23
Powder Metallurgy 0 240 32 0 6.3 0 0.53 0.02 1.2 0.1 8.9 0 0 0.43 0 0.04 0 3.6 13 0 0
Car Emissions 0 11.1 8.8 0.58 2.1 0 0.45 0 0.15 0.05 3.3 0.1 0.29 0.27 0 0 14.4 73 0 9.0 31
Diesel Trucks 0 7.6 17 0.11 12.7 3.0 2.0 0.1 0.2 0.18 15.3 0.2 5.2 1.5 0 0 0.3 1.0 5.5 7.2 460
Marine 0 12.7 150 13 10.9 49 1.5 0 0.55 0.33 7.6 0 0 0.68 0 0 0.75 0.02 109 37.5 0

TABLE 14. Probable Sources of Pollution Together with Their Elements Source Concentrations in mg/g



With the network trained the edit input facility could be entered. By setting each of the
21 elements concentrations to zero, the output section displayed a zero unit of
association for every source. This is to be expected, since if there is zero concentration
for each element, there should not be any sources indicated by the model. By entering
the concentrations in thermometer units for the elements representing group 1 of the fine
fraction data shown in Table 13, the output section showed the level of association or
source strengths for the possible sources. The inputs entered, to the nearest whole
number are: Pb = 5.8, Fe = 5.4, C = 3.9, Mn = 5.1, Ti = 3.6, Br = 3.1, K = 3.8, Ca =
3.3, V = 4.1, As = 2.2 and Cl = 1.6. The results show that possible sources are steel
furnace (association strength = 1), car emissions (association strength = 4), and road
dust (association strength = 7), there are no other sources.

The source profiles being used have element concentrations measured in mg/g and were
recorded within a few tens of metres of the source. On the other hand the receptor
model recorded the concentrations of the elements, in ng/m3 of air, several hundreds or
thousands of metres from the sources. This huge difference in concentration for each
element, makes it impossible to use the receptor concentrations themselves for direct
comparison with the source concentrations. However, by using thermometer unit
concentrations, at least the maximum receptor and source concentrations for each
element are assigned the same value, that is eight thermometer units. Therefore, by using
thermometer units in the neural edit facility rather than numbers in ng/m3, it is possible
to extract meaningful results from the neural networks. Clearly this process is not
perfect, especially since some sources have similar profiles, so it is necessary to repeat
each neural network using different network parameters in order to obtain alternative
interpretations of the same data.

For each group of elements found from the fine fraction data, their source strengths in
thermometer units, i.e. /8, were found for each of  eight different networks a, b, c, d, e,
f, g and h trained. For group 1 it was deduced that the main source is road dust,
followed by car emissions and oil power plant etc. For group 3 elements, both fine and
coarse fractions, there are secondary pollutants such as nitrate (NO3), which originates
from nitrogen oxide emissions mainly from vehicles, sulphate (SO4) originating from
sulphur dioxide emissions as a result of oil and coal combustion, and ammonium (NH4)
from fertiliser plants or livestock.

Finally, a summation of all the source strengths, both fine and coarse fractions showed
that air pollution originating from motor vehicles and oil combustion are the two
dominant sources of pollution in Birmingham. These are followed, to a much lesser
extent, by tyre manufacture, cement production, glass manufacture, road salt, steel
furnaces, coal power plants and powder metallurgy. The reasons why pollution from
the iron and steel industry was much less in the early nineties than one might have
expected is partly due to better emission controls but primarily due to the closure of
many steelworks around Birmingham belonging to British Steel.



Discussion of Results

The neural network computations used to find groups of elements from the fine and
coarse fraction data produced results that were not too dissimilar from the factors
obtained by factor analysis. This suggests that this new methodology is very useful for
receptor modelling especially as it gives the elements concentrations rather than the
less useful loadings produced by factor analysis. One of the problems associated with
the receptor modelling of a complicated aerosol, which has nothing to do with the
method of calculation used, is the fact that each group of elements or factors found, can
have several sources of pollution. Because of this another analysis has to be made in
order to compute the relative strengths of these sources. The previous section illustrated
how a neural network solution could be used to solve this problem, which previously
had been addressed in a qualitative rather than a quantitative manner.

Overall, the primary purpose of receptor modelling is to identify sources of pollution
so that steps can be taken to improve the ambient air quality. From the knowledge
gained by analysing the Birmingham aerosol data, it can be concluded that if the
region’s air quality is to be improved then firstly, not only automobile emissions need
to be reduced, but also the number of vehicles on the roads. Secondly, industries and
plants using oil-fired boilers, furnaces etc., which are in abundance in the Birmingham
region, need stricter emission controls.
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