New sample cell technologies for mid infra red methane detection


Date: 13:00:00 - Nov 30 2017
Speakers: Dr Jane Hodgkinson

If you're looking for professional advice on methane analysis by means of an open-path laser-absorption spectrometer or laser-dispersion spectroscopy, follow the links for the relevant e-Learnings. Similarly, if you're in need of information on hyperspectral infra-red imaging for any-state methane, take a look at Jean-Phillipe Gagnon of Telops Inc.'s lecture on the topic. Finally, click through to find an overview of new sensor technologies for methane analysis.


Tunable diode laser spectroscopy (TDLS) is an important measurement technology for gas detection, offering both high sensitivity and specificity to the target gas. With this technique, much of the engineering requirement and achievable field performance is attributable to the gas cell in which the light interacts with the target gas. We present two new technologies for gas cells, each with different attributes, used for methane detection in different applications. 

The first technology has been developed for in-flight measurement of methane on board light aircraft, with the potential for further development for UAVs. Deployment on a light aircraft offers the potential for greater manoeuvrability and lower flight speeds than larger atmospheric research aircraft, allowing measurements to be made closer to gas emission sources and with higher spatial resolution. However, these aircraft typically experience higher levels of vibration and g-loading than larger platforms. The emission wavelength of an interband cascade laser (ICL) is scanned through methane lines at 3.313µm. An integrating sphere was chosen as a multipass gas cell as this offers an extended pathlength in a compact form and is robust against vibration or misalignment caused by g-loading. A limit of detection for methane of 0.3ppm has been achieved using low cost, light weight and low power components. The instrument is currently being certified for deployment on a two seater propeller aircraft, a Scottish Aviation Bulldog, owned and operated by Cranfield University. 

Our second instrument uses a novel, low volume gas cell with a long interaction length (5-10m). This has been constructed from hollow silica waveguides, which have an internal bore of 300-1000µm, in combination with a quantum cascade laser (QCL) operating at 7.8µm. The low volume cell may be used where low flow rates are required, for example for detecting headspace gases released from biological samples, or at high flow rates where short (<1s) response times are needed. We have engineered entry / exit points for the light and the gas with no dead volume, and mechanical supports for the coiled gas cell itself. Through a combination of optomechanical engineering and use of the fast intra-pulse modulation technique, issues of vibration and drift for these cells are removed, again making them robust, and a limit of detection of 0.26ppm has been achieved. 

Performance results for both technologies will be presented, and common themes of sensor systems design, certification and practical issues will be discussed.

Free to watch

Sessions are free to watch. Please login to view this session or create an account.



Speakers


Dr Jane Hodgkinson
Dr Jane Hodgkinson (Cranfield University)


Digital Edition

IET 34.2 March 2024

April 2024

Gas Detection - Biogas batch fermentation system for laboratory use with automatic gas analysis in real time Water/Wastewater - Upcycling sensors for sustainable nature management - Prist...

View all digital editions

Events

Hannover Messe

Apr 22 2024 Hannover, Germany

FORUMESURE

Apr 22 2024 Marrakech, Morroco

Asia Water 2024

Apr 23 2024 Kuala Lumpur, Malaysia

Korea Lab 2024

Apr 23 2024 Kintex, South Korea

Canadian Hydrogen Convention

Apr 23 2024 Edmonton, AB, Canada

View all events