
One of the most significant testing procedures for gasoline 
is the Octane test, also known as the engine knock test4. 

In this test, gasoline blends are measured for their propensity 
to knock. Knock occurs from the premature combustion of the 
air-fuel mixture in an internal combustion engine, leading to 
undesirable and damaging high-pressure shock waves and a 
characteristic knocking sound5. Octane tests and their numbers 
hold significant value to the refinement and efficacy of gasoline 
as a whole. And though people likely do not understand the 
intricacies of octane testing, car owners are guaranteed to 
understand the octane numbers on gasoline pumps. This paper 
illustrates the importance and relevancy of both octane testing 
and octane numbers, noting the process’s unique strengths 
and discussing several recent advancements that hold positive 
implications for future octane engine testing.

Octane Ratings, and Octane Testing:
Firstly, it is important to define keywords and processes before 
elaborating further. All forms of gasoline are assigned an octane 
rating (AKA octane number), typically seen in gas pumps such 
as Figure 1, with higher octane ratings indicating more stable 
fuels6. Octane numbers are an average of two octane rating 
methods: Motor Octane Number (MON) and Research Octane 
Number (RON). RON is a measure of the gasoline’s performance 
in gentler conditions (around 600 rpm and intake air at 49℃) 

whereas MON is the gasoline’s performance in more intensive 
conditions (around 900 rpm and intake air at 149℃)7, and octane 
testing is a process by which both numbers and the gasoline’s 
overall octane rating is measured and determined. Octane testing 
is a theoretically simple process. In a specialty CFR engine, the 
fuel is observed under standardized operating conditions. The 
compression ratio of the engine is then increased, which in turn 
increases the pressure and temperatures during combustion, 

hence increasing the propensity of a fuel to knock. When the 
engine knocks at a certain intensity, the associated compression 
ratio is then compared to a reference fuel blend of iso-octane 
and n-heptane, which knocks at the same intensity for the 
compression ratio. The octane number of the fuel is the blend 
of iso-octane in that fuel8. Then, relating to the reference fuels, 
the specific RON or MON of the fuel is determined as conditions 
for the tests differ in engine speed and idle air temperatures6. 
With both ratings determined, the octane number posted on fuel 
pumps is given as the average of the RON and MON.

As mentioned, octane testing for MON and RON are two separate 
processes. Therefore, separate testing machines are employed, 
each configured toward separate tests. Current devices allow 
RON and MON tests on the same engine, but many scientists still 
prefer using separate machines tailored to each6. To consolidate 
research efforts, the American Society for Testing Materials 
(ASTM) has designated standards for both testing processes, 
among many others. As such, this paper will refer to RON and 
MON testing by their designated method names: ASTM-D2699 
for RON testing of engine fuel, and ASTM-D2700 for MON testing 
of engine fuel10.

UPDATES AND ADVANCEMENTS IN OCTANE TESTING

Introduction:
The automobile is a revolutionary invention 
that requires no further introduction. Equally 
as impactful was its subsequent popularization 
of  gasoline. However, its discovery in 1859 was 
uneventful, as it was discarded as a byproduct 
of  crude oil refining1. It would remain as such 
until the invention of  automobile engines in 
1892, which required gasoline as its primary 
fuel source2. By the 1920s, millions of  gasoline-
powered cars populated the United States. 
Moreover, an equal number of  gasoline 
service stations opened up across the nation1. 
To this day, gasoline continues to dominate 
automotive fuel3, and countless developments 
in gasoline production and its refinery have 
ensured that the fuel keeps pace in potency and 
efficiency with the industries it powers.
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Figure 1: Three octane numbers differentiating three different gasoline 
types of varying stability 9.

Figure 2: A combination octane rating unit engine octane. This unit (left) is able to determine both MON and RON values. Due to the nature of the device, both 
tests can be operated using the same chamber. A close-up of the carburetor is shown (right)



Importance and Relevance  
of  Octane Testing:
With names and definitions properly defined, we must now ask 
why it is so important to continue octane testing development. 
Fundamentally, octane numbers represent the stability of 
gasoline and its tendency against knocking. A high octane 
number indicates a more stable fuel and thus a lower chance of 
auto ignition during use6. By accurately rating the octane quality 
of fuels in such a way, researchers and consumers alike can 
gauge the efficacy of many different fuels. As oil companies 
distill the number to simply imply the quality of gasoline, drivers 
benefit passively from the association of higher octane numbers 
to higher quality fuels6.

From a researcher’s standpoint, octane numbers also hold 
relevance. Measuring an accurate octane rating serves as a valid 
marker for retracing the creation of that fuel. With exact samples, 
recreating a successful octane fuel process can be much clearer 
given a numerical value that resulting compounds must also 
match. In addition to boosting the consistency of samples, future 
research building on potential compounds will have a more solid 
foundation with a traceable pathway towards producing that 
compound.

Finally, the simplest benefit of all would be the overall efficiency 
of the engine. While the act of reducing knocking is itself a boon 
to efficiency, further research has determined a link with the 

sensitivity of fuel, the difference between the RON and MON 
values, and the engine’s efficiency11. In a remarkable study 
conducted in 2005 by a team from Shell Global Solutions on the 
concept, the group discovered a positive association between 
increasing the RON and subsequent sensitivity of the fuel and 
the engine efficiency and fuel consumption, with sensitivity 
more strongly influencing energy efficiency at lower RON values 
(92) than higher values (98)11. Therefore, by upholding a higher 
sensitivity (i.e. a lower MON for a given RON), fuels can have 
increased anti-knock performance. Octane number testing 
continues to lead the industry, and its importance cannot be 
understated. Without it, fuel research would be decades behind, 
and fuel efficiency would not be as high as it is today.

Recent Innovations:
Like all scientific innovations, octane testing has experienced 
a myriad of different innovations to improve the process. As 
octane numbers are a rather significant factor in fuel and can 
only be determined experimentally6, many researchers have 
devised methods of predicting octane numbers and other 
qualities by extrapolating data from previous research to make 
the rating process easier. This paper will cover several recent 
advancements in the area of octane research, making note of 
their significance and positive implications on future octane 
testing.

Infrared Spectroscopy:
Firstly, a research group from the King Abdullah University of 
Science and Technology in Saudi Arabia produced a model for 
predicting RON and MON using infrared spectroscopy (IR) of 
pure components13. The area of fuel property predictions is 
extensive, as direct testing using proper equipment would be 
far too costly and impractical to conduct13. An area of study in 
this field relates to chemometric-based fields areas of research, 
applying the partial least-squares regression (PLSR) algorithm 
to predict octane numbers. However, new approaches such 
as artificial neural networks (ANNs) have become increasingly 
more prominent as they have proven to accurately predict 
molecule behaviors and other qualities within the compound. 
To acknowledge the prevalence of ANNs, the group explored 
several methods of gas-phase IR spectra of hydrocarbons and 
ethanol to predict the molecular properties of their compound. 
Then, the team applied its findings to an ANN to demonstrate IR 
spectroscopy’s viability in octane number prediction. According 
to the study, the IR spectra of 61 pure hydrocarbon species 
were employed to create 148 blends of hydrocarbons13. Then, 
the data for each species was collected and run through various 
algorithms. Either principle component analysis (PCA) or singular 
value decomposition (SVD) was used to simplify the data, and 
PLSR was used to derive features from the IR spectra.

From the results, the study concluded that the model was a 
success. The group was able to extract the necessary data to 
predict the efficacy of the compound from IR spectra and PLSR. 
Furthermore, the team also demonstrates the use of ANN to 
better capture octane behavior, capturing errors well within the 
margin of error for RON and MON values13. Thus, the efficacy of 
IR spectroscopy as a method of octane number prediction is a 
rousing success, allowing for future models to be produced using 
the IR spectra of pure hydrocarbons and other components.

Artificial Neural Networks:
Advancing a method mentioned in the previous study, a 2023 
study conducted by a research group from the University of 
Massachusetts illustrates an approach to developing a model 
that predicts octane number and octane sensitivity using ANNs14. 
As previously mentioned, physical octane testing for large sets 
of potential fuels would be a waste of time, money, and samples. 
Therefore, this team employed ANNs, which are effective at 
predicting the properties of molecules without the need for 
physical samples14. These networks are trained with quantitative 
structure-property relationship (QSPR) descriptors, which inform 
properties of single-component fuels such as octane and have 
the unique potential to capture fundamental properties and 
interactions that would be lost with other datasets. For modeling 
combustion-related properties of hydrocarbons, numerous 
methods exist using many other approaches for modeling. Still, 
research has proven that ANNs have outperformed other models 
when concerning prediction accuracy of the final product15. 
Furthermore, ANNs have previously been used to predict RON 
and MON values of gasoline and gasoline blends with great 
success16. The study then proposes two different methods for 
predicting the octane sensitivity (OS) of a given compound: either 
by predicting RON and MON individually to compute the OS or 
by cutting out the middleman and directly computing the OS. 
Afterwards, in both cases, ANNs were trained on the relevant 
descriptors, and the fuel properties of 278 unique compounds 
were predicted for both methods.

These results from the experiment were astounding and 
impactful. From a direct analysis of the data, the ANNs predicted 
the RON, MON, and OS values effectively, with set percentage 
errors falling within acceptable measures, as shown in Figure 
414. Given such percentages, the study concluded that the 
models performed more effectively when directly predicting 
OS rather than predicting the individual RON and MON values, 
as the general error value when computing OS is smaller in 
comparison to computations performed with two values 
possessing errors. In addition to their fairly accurate predictions, 
the models were able to identify the exact origins of reactivity 
within the molecule’s structure14, as the QSPR descriptors allow 
for fundamental insights into the properties responsible for 
molecule reactivity. Finally, the ANNs in the study successfully 
identified hidden relationships between molecular structure and 
reactivity, highlighting several high-potential molecular fuels that 
are currently being studied as viable sources. Needless to say, the 
artificial neural network models were a complete success, and 
the information contained within the QSPR descriptors provides 
an incredibly strong foundation for the future chemical analyses 
of octane fuels.

Analytical Instrumentation
9

WWW.PETRO-ONLINE.COM

Figure 3: A model of the road map for the experiment 13.

Figure 4: Plots of individual ANNs showing predicted vs experimental values for ROR (RON), MOR (MON), dOS, and OS14.
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Conclusion: 
To conclude, octane testing is a vital part of gasoline 
manufacturing. Analyzing octane ratings not only informs 
the overall energy efficiency of the fuel but also improves the 
efficiency of further octane developments. In attempting to 
synthesize higher octane ratings, researchers have regularly 
innovated on its components, developing new methods 
of increasing efficiency and prediction models to discover 
hidden fuel sources and further advance the growth of fuels. 
Undoubtedly, octane testing will remain significant for decades 
to come, as new fuels are discovered and octane ratings 
continue to grow.
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DESCRIPTOR NAME IMPORTANCE DESCRIPTION

AVS_B(s) 0.0380 Average vertex sum from Burden matrix weighted by I-state

nCsp2 0.0344 Number of sp2 hybridized carbon atoms

SIC1 0.0272 Structural information content index (neighborhood symmetry of first-order)

Chi_Dz(p) 0.0268 Randic-like index from Barysz matrix weighted by polarizability

CIC1 0.0250 Complementary information content index (neighborhood symmetry of first-order)

SpMax1_BH(s) 0.0228 Largest eigenvalue n. 1 of  Burden matrix weighted by I-state

SpMax1_B(s) 0.0225 Largest eigenvalue from Burden matrix weighted by I-state

Eta_D_epsiB 0.0202 Eta measure of unsaturation

Chi1_EA(ed) 0.0164 Connectivity-like index of order one from edge adjacency mat.  
weighted bt edge degree

LLS_01 0.0161 Modified lead-like score from Congreve et al. (six rules)
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Table 1: The ten most influential QSPR Descriptors for OS, their importance, and description 14.
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